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Here we have omitted the terms not containing the second derivatives of the generalized 
coordinates in expression (3.6) and the third derivatives in expression (3 .3) .  From (3.6), 
(3.3) and (3.4) we obtain the equations of motion in the independent generalized coor- 
dinates x and y 

z¢~ + a2 ~ (z~) + ~)--- 0, ~c~ + a~ ~- ('~ + ~):= 0 
Z" 

They agree with the equations of motion obtained in [8] by another method. 
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We study a linear and a perturbed system ; in the latter the argument is trans- 
formed. Under the assumption that the trivial solution of the linear s ~ m  is 
stable, we ascertain the conditions under which the trivial solution of the perturbed 
system also will be stable. 

Let ! ( t , ~ ) = ! ( t , ~ l , ~ : , . . . ~ ) ( k =  1,2 . . . . .  p), where ],~1,~2 .. . . .  ~p are m-dimen- 
sional vectors. We consider the following two ruth-order systems : the linear one 

,j' = A Ct) y (1) 
and the perturbed one (see [1]) 
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z '  (t) --  A (t) z (t) -4- [ (t, z (qDk (t, z (t)))) (2) 

where A is a square mau tx  and q~k are transformations of  the argument. We study the 
stability of the u'lvial solution of  system (2) which is to be undestood differently in each 
of the cases to be considered. We assume that the trivial solution of  system (1) is stable. 
Let us ascertain the conditions under which the trivial solution of  system (2) will be 
stable. 

Integrals ate everywhere understood in the Lebesgue sense. Measurability, i f  it is not 
s~pulated,  also is understood in the Lebesgue sense. The symbol 1[ [[ denotes the norm 
of a vector  ct  of  a matrix, which equals the sum of the absolute values of  the elements.  
By Y (t) we have denoted the matrix which is a solution of  system (1), satisfying the 
init ial  condition Y (to) = E, where E is the unit maU'lx. 

Let us assume that the following conditions, which we call  conditions c~1, are fulfilled 
for syste m (2). The matrix A (t) is defined, continuous, and bounded for t ~ [t, ~¢), 
I[ A (t) [] ~ M; the components of  the vector-valued function ! (t, ~ )  are defined and 
continuous for t ~ [to, ~ )  and 11 ~ IJ ~ R, where R > 0; there holds the inequality 

P 

II/(t, ~ )  [1 "-.< ~, g~ C t) U ~h" U (3) 
/¢~,1 

where g~ Ct) are continuous functions and 
P 

k=,.1 

the functions q~k (t, ~) ate defined for t ~ [to, ~ )  and l[ ~ I[ -.~ R, satisfy the inequalities 
q~k(t, ~) ~ t ,  and have continuous partial derivatives in all the variables ; there exist 

numben a' c > O such that 0 I 0 (t, ~,) l ~ c 

For the given case, as the set of  initial vec r~ -va lued  functiom we take a set g which 
consists of  continuous m-dimensional  vector-valued functions, bounded for t ~ t 0 . The 
trivial  solution of  system (2) is said to be stable relative to Z if  for any e > 0 there 
exists 6 > 0 such that the solution of  system (2), con, esponding to any initial vecWr- 
valued function z ~ Z such that IJ z [J < 6, satisfies the inequality ][ z ]J ~ e for t ~ .  
to. I f  moreover lira z (t) ----- 0 as t --, z¢, then the trivial solution of  sy~ern (2) is said 
to be a tymptot ical ly  stable relative to Z. 

T h e o r e m  1 .  Assume that 
1) conditions ~I are fulfilled for system (2);  
2) matrix A (t) is periodic cr is such that 

t 

I s p A ( ~ ) d ' r ~  > - - o o  ~t 
to 

8) tile integrals 

tt 

converge.  Then from the stability of  the trivial solution of  system (1) follows the stabi- 
lity relative to Z of  the ~'ivial solution of  system (2).  

P r o o f .  Assume that the trivial solution of  system (1) is stable. We take a number r 
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such that  the inequali t ies = - -  c (M + N)r  > 0, 0 < r < R are fulfi l led. We can find 
a number  a (see [2])  such chat il r (t)]" -~ (e) [I ~ a for t E [ t ,  ~ ) ,  • E [to, t ] .  We 
denote p 

kffiml te 

By virtue of  the s~b i l i t y  of  file ~rlvtal solution of  system (1) we can find numbers 6 > 0 
and 61 ~ 0, satisfying the inequali ty (6 -+- ab 81) exp Cab) < r, such that  i f  the solution 
l/ o f  system (1) satisfies the inequali ty II Y (to) It ~ 61 ar the ini t ial  instant, then 
I] / /(t)  II < ~  for t ~ [to, ~o) . Let us consider a subset Z x of  set Z, consisting of  vec to r -  
valued funct iom satisfying the inequal i ty  II z II ~ 61. From [3] (Theorem 2.15)  follows 
the exis tence of  a solution of system (2) for any ini t ia l  vec to r -va lued  function z ~ ZL 
Let us show that  each  such function is infinitely continuable.  

We assume the  opposite. Then there exist a solution z( t )  and a number T ~ to such 
that  l i z ( T )  ll----- r, while H z ( t ) [ l < :  r for t ~ [ t o ,  T) .  For t ~ [ t ,  T] w e h a v e  

d a 
~-/-  q~  (t,  z (t)) =, -~-  % (t, z (t)) + 

~ q~ (t, x (t)) x i' (t) ~ a - -  c [I z" (t) tl ~ a - -  c ( M  + N)  r 
t l  I OZ~ 

Therefore ,  for t ~ [t0, T] the funct iom qD~ (t, z (t)) have inverses which we denote by 
~ k ( t )  , respect ively .  The  func~om ~ k  (0 are defined and c o n ~ n u o m ~  different iable 
on the in~A-vals [q)k (to, x (to)), q)~ (T, x iT))] , respect ively .  We define these functions 
in such a way that  they ate cont inuomly different iable on the in te rvah  [q~k (to, z (to)), 
T] ~. and, that  their der/vative$ are positive. 

For a given solution z the equa l iw 

.~ Y (0 Y"~ (~) / (e, z (% (~, z (~)))) d'~ (4) (0 y it) + 
t. 

is valid for t ~ [to, T ] ,  where l/ is a solution of system (1) with the ini t ia l  condition 
(to) = z (to) : ~or t ~ [to, T J ,  we have 

p 

and, consequentiy,  

~z( t ) , ,~(8-~-abS~)exp(a  ~ S g ~ ( ' r ) d ' r ) ~ ( 8 - ~ - ~ t ) e x p ( a b )  
It-I q~(t.) 

Therefore,  J] z (T) I[ <~ r. This signifies tha~ the solution z it) is continuable onto the 
whole singular semi - in te rva l  [to, =¢) and that  the inequali ty [~ z ¢t~ I 1 ~  (~ + ab 6,) 
exp Cab) is valid for t ~ [t 0, ~¢). There fore , .~e  u' ivial  solution of ~ s t e m  (2) is s tab le .  
Theorem I is proved. 

T h e o r e m  2 .  Assume that  
1) conditions co x are fulfilled for s y s ~ m  (2) ; 
2) m a ~ i x  A (t) is per iodic ;  
3) the integrals 
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c o n v e r g e  ; to 

4) the functions t - - ~ k ( t ,  ~) are bounded for t ~ [ t 0 , ~ ) ,  ]1 ~ l J ~ R  . 
Then from the asymptotic stability of the trivial solution of  system (1) follows the 

asymptotic stahility relative to Z of the trivial solution of system (9.), 
The validity of  Theorem 9. follows from the inequality 

p o o  

e't ,] x (t) ,J "~ al exp (bx ~ ~ g~ ('r)d~') 
,t, ]~ml te 

where a t, b t and ~ are certain positive numbers, which in turn follows from equality (4) 
if the initial conditions are sufficiently small. 

If  the transformations q~ of the argument do not depend upon the solution, then as the 
set Z we can take the set consisting of  vector-valued functions whose components are 
Borel measurable. 

Let m now assume that the following conditions, which we call conditions ¢0., are ful- 
filled for system (2). The mau'ix A (t) is defined and bounded for t ~ h~. oo) and its 
elements are measurable on any finite interval [to, T]: the vector-valued function 
f (t, ~l~) is defined for t ~ [to, oe) and 1] ~ [i "-- /~. where R > 0, for fixed ~k its com-  
ponents are measurable in t on any finite interval [to. 7"], while for fixed t they are 
continuous in the ~k; inequality (3) holds, where gk (t) are measurable functions on any 
finite interval [to, T] and are bounded for t ~ [to, ~) ;  the functions ¢p~ (t, ~), bounded 
for t E [to, oo) and II ~ I[ ~ / t ,  satisfy the inequalaties ~ ~ t, and for fixed ~ they 
are meast~rable in t on any finite interval [to, T], while for fixed t they are continu- 
ous in ~; the inequalities l~k( t ,  ~ ) - - t l ~  h~ ( t ) [ l~ [ [  hold, where h k(t) are func- 
tions which are measurable and integrable on any finite interval [t o, 7"]. 

By Zx, where ~ is a nonnegative number, we denote the set of m-dimensional  vector-  
valued functions, defined for t E ( - - ~ ,  to] and satisfying the following conditions : if 
z ~ Z ) . a n d  t ' , t " E ( - - ~ ,  to], then [ I z ( t " ) - - z ( t ' ) ] l ~ [ t " - - t ' l .  For the given 
case we take the set Z~. as the set of initial vector-valued functions. The trivial solution 
of system (2) is said to be stable relative to Z~. if for any a ~ 0 there exists 6 ~> 0 such 
that the solution of system (2), corresponding to any initial vector-valued function z ~ ZT. 
such that I[ z (t) II ~ R and [I z (to) II ~ ~, satisfies the inequality [1 z II "< e for t ~ to . 
If moreover lira z (t) --  0 as t - .  ~o, the trivial solution of system (2) is said to be asym- 
ptotically stable relative to Z~. 

T h e o r e m  3 .  Assume that 
1) oondltions ¢o. are fulfilled for system (2);  
2) matrix A (t) is periodic or is such that 

t 
I sp A (x) ~x ~ Ix > - -  
ts 

3) the integrals 

~ g, (x) d'¢, S g~ (~r) h~ Cx) d'c 
to to converge.  

Then from the stability of the trivial solution of system (1) follows the stability re la-  
tive to ZT. of the trivial solution of  system (2) for ally ~.~/0. 
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To prove Theorem 3 we use equality (4) and direct estimates. The theorem on asym- 
ptotic stability can be formulared analogously. 
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0 

R .  be the solution of the system of equations 

z" (t) = A (t) z (t) ÷ b (t), z (0) = =o (0 ~ t ..< r)  

The vector y (t) accessible to observation is given by the relations 

dy (t) = h (t) H (t) x (t) dt ~, o (t) d~ (t), y (0) ~ 0 

We consider the problem of optimizing phase coordinate bounds. We obtain the 
conditions for the solvability of the problem and establish the form of the opti-  
real observation laws. The paper is closely related ¢o [ I ,  2].  The problem of 
optimizing the observation process has been studied from another viewpoint in 
[3, 4] .  

Let a plant's phase coordinate vector z (z) from an n-dimensional  Euclidean space 

(i.i) 

(1.2) 

The elernenrc of the roan'ices A (t), H (t), a (t) and b (t) are continuous functions. The 
random variable x (0)has a Gaussian distribution with the covariance matrix 

Do = M (Zo -- MxO (Zo -- Mzo)', Do > 0 

Here the prime is the sign for transposition, M is the mean, the symbol D 0 > 0 signifies 
the positive definiteness of  matrix Do. The Wiener process ~ (t) does not depend upon 
z (0), and the matrix o (t) o' (t) > O, 0 ~ t ~ r .  Without toss of generality [2] we can 
rake the dimension of vector y (t) equal to n. The control of the observation process is 
effected by choice of the scalar function /, (t~. W e  comider the linear combination 
q 'z  (T) (the nonzero vector q ~ R.) is specified). Let  D (T~ be the covariance matrix 
of the conditional distribution of vector z (T) under condition y (s), 0 ~ s ~ T. 

P r o b l e m  1.  Determine the function "/(0 =/~'~ (t) (the optimal observation law) 
which minimizes the expression (1.3) q'D (r) q 


